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Abstract: Upon addition of an excess amount of an aldehyde 3, the Mukaiyama aldol reaction of a silyl enol ether
2 proceeds in tandem and two-directional fashion by the asymmetric catalysis of a binaphihol-derived chiral titanium
complex (BINOL-Ti: 1) 1o give the silyl enol ether 4 in 77% isolated yield in more than 99% ee and 99% de. The
present asymmetric catalytic Mukaiyama aldol reaction is characterized by amplification phenomena of the product
chirality on going from the one-directional aldol intermediate 6 (98.5% ee, R) to the two-directional product 4
(99.6% ee, R,R). Further transformation of the pseudo C2 symmetric product 4 (> 99% ee, > 99% de) in its’'
protected form as the silyl enol ether is established leading to a potentially potent analogue of HIVP inhibitor 9a.

© 1997, Elsevier Science Ltd. All rights reserved.

The aldol reaction constitutes one of the most fundamental bond construction processes in organic
synthesis.! Therefore, a detailed understanding of the reaction mechanisms of aldol processes? and their
asymmetric catalysis3 have attracted recent attention. In the course of our studies on the asymmetric catalysis
of the Mukaiyama aldol reaction (the Lewis acid-promoted carbonyl-addition of silyl enol ethers of ketones),*
we made an unexpected observation: Upon addition of an excess amount of an aldehyde, the Mukaiyama aldol
reaction proceeded in a two-directional fashion by the asymmetric catalysis of a binaphthol-derived chiral
titanium complex (BINOL-Ti: 1)5 (Scheme 1). Tandem¢ and two-directional prototropic ene-type’8.? aldol
reactions are quite useful, because the regiochemical problem in enolate generation during the secondary step is
inherently solved and, in addition, because the number of operations for carbon-carbon bond extention is
reduced relative to the step-wise aldol reaction.!® The kinetic future and synthetic application of this tandem
and two-directional asymmetric catalysis of the Mukaiyama aldol reaction is the subject of this communication.
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The reaction was carried out by adding the terz-butyldimethylsilyl enol ether 2 and an excess amount of
glyoxylate 3 (2 equiv.) at 0 °C to a dichloromethane solution containing 10 mol% of the chiral titanium
complex (1), that was prepared from (R)-binaphthol and diisopropoxytitanium dichloride as reported
previously.!! The reaction was completed within 3 h as determined by TLC monitoring. Hydrolytic work-up
with saturated sodium bicarbonate at 0 °C followed by flash column chromatography gave the silyl enol ether 4
in 77% isolated yield as a 1 : 4 geometrical (E/ Z) mixtwre.!? The enantiomeric and diastereomeric purity of the
product 4 was determined to be more than 99% ee and 99% de by chiral capillary GLC (CP-Cyclodextrin-B-
2,3,6-M-19, 25 m) (tr (155 °C): (R, R)- 5, 113.2 min; (S, S) - 5, 114.4 min; meso-5, 114.4 min. tg (150
°C): (R, R)-5', 89.4 min; (S5, S5) - 5', 89.4 min; meso-5', 92.6 min.) and !H NMR (300 MHz) analyses
after hydrolysis to dihydroxyketone 5 or bis-silylation thereof to 5' with bis(trimethylsilyl)trifluoroacetamide
(BSTFA).
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The two-directional asymmetric catalytic Mukaiyama aldol reaction is characterized by an unique kinetic
feature of the one-directional aldol intermediates (R)- vs. (5)-6. Therefore, the amplification phenomena of the
product chirality is observed on going from the one- (98.5% ee, R) to the two-directional product (99.6% ee,
R,R) as shown in a control experiment (Scheme 2).13 The secondary aldol reaction of the primary ene-type
aldol adduct (R)-6 in 98.5% ee was found, by catalysis of the (R)-catalyst (1), to provide 98.4% of the
secondary product (R,R)-5 in 99.6% ee along with 1.6% of the meso-diastereomer (5). On the contrary, the
secondary reaction of the (S)-enantiomer (6) (95.9% ee, S) by the same catalyst (R)-1 resulted mainly in the
formation of meso-diastereomer 5 (94.1%) with 5.9% of the (5,5)-5. Thus, the secondary reaction of (R)-6
catalyzed by the (R)-catalyst (1) leading to (R,R)-5 is calculated to be 3.4 times as fast as the (§)-counterpart
(6) to give the (S,5)-enantiomer and, therefore, the product chirality is amplified upon going from the one- to
the two-directional product (Scheme 3).
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The pseudo C2 symmetric nature of the two-directional product (> 99% ee and > 99% de) in its'
protected form as the silyl enol ether should provide valuable synthetic applications in the context of the
synthesis of C2 symmetric HIV protease (HIVP) inhibitors 9.14 The complex of 9a with HIVP is calculated
to be more stable by 6.76 kcal/mol than the HIVP/L-700,417 complex. Thus, the synthesis of the potentially
potent!S homologue (9a) of the HIVP inhibitor, L-700,41716.17 was established by hydrogenation (Hp/Rh-
Al203, ethyl acetate), alkylation (BnBr/Ag20, ether), hydrolysis (LiOH/methanol-H20 (3 : 1)), amide
formation by the mixed anhydride method following the literature procedure!? and de-silylation (TBAF, THF).
A similar transformation produced other HIVP inhibitor analogues with different side chains (9b ~ 9e).
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In summary, we have uncovered the first example of the tandem and two-directional asymmetric
catalysis of the Mukaiyama aldol reaction with complete control of the absolute and relative stereochemistries of
the pseudo C3-symmetric product. We have further disclosed the amplification phenomena of the product
chirality on going from the one-directional aldol intermediate to the two-directional aldol product
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